Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum.

نویسندگان

  • Tibor Koos
  • James M Tepper
  • Charles J Wilson
چکیده

Most neurons in the neostriatum are GABAergic spiny projection neurons with extensive local axon collaterals innervating principally other spiny projection neurons. The other source of GABAergic inputs to spiny neurons derives from a small number of interneurons, of which the best characterized are the parvalbumin-containing, fast-spiking interneurons. Spiny neuron collateral inhibition was not demonstrated until recently, because the IPSPs recorded at the soma are surprisingly small. In contrast, interneuronal inhibition was readily detected, comprising much larger IPSPs. Here, we report the application of quantal analysis and compartmental modeling to compare and contrast IPSCs in spiny neurons originating from axon collaterals and interneurons. The results indicate that individual release sites at spiny and interneuron synapses have similar quantal sizes and baseline release probabilities. Interneuronal unitary IPSCs are several times larger because of their proximal location on the neuron and because they have a larger number of transmitter release sites. Despite the small amount of current they can deliver to the soma, spiny cell collateral synapses had moderately high baseline release probabilities (0.5-0.9), suggesting that they are not weak because of some form of depression or modulation. The size of unitary collateral synaptic currents increased monotonically during development. These results argue against models of competitive inhibition in neostriatum, including those in which competitive inhibition is transiently effective during development and learning, and suggest a different role for the spiny cell axon collaterals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different inhibitory inputs onto neostriatal projection neurons as revealed by field stimulation.

This work investigated if diverse properties could be ascribed to evoked inhibitory postsynaptic currents (IPSCs) recorded on rat neostriatal neurons when field stimulation was delivered at two different locations: the globus pallidus (GP) and the neostriatum (NS). Previous work stated that stimulation in the GP could antidromically excite projection axons from medium spiny neurons. This maneuv...

متن کامل

Actions of substance P on rat neostriatal neurons in vitro.

Actions of substance P (SP) on the neostriatal neurons in in vitro rat slice preparations were studied via whole-cell patch-clamp recording. Almost all large aspiny neurons (cholinergic cells) and half of the low-threshold spike (LTS) cells (somatostatin/ NOS-positive cells) showed depolarization or an inward shift of the holding currents in response to bath-applied SP in a dose-dependent manne...

متن کامل

Differential changes of synaptic transmission in spiny neurons of rat neostriatum following transient forebrain ischemia.

Spiny neurons in neostriatum are vulnerable to cerebral ischemia. To reveal the mechanisms underlying the postischemic neuronal damage, the spontaneous activities, evoked postsynaptic potentials and membrane properties of spiny neurons in rat neostriatum were compared before and after transient forebrain ischemia using intracellular recording and staining techniques in vivo. In control animals ...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Presynaptic modulation by somatostatin in the rat neostriatum is altered in a model of parkinsonism.

Somatostatin (SST) is a peptide synthesized and released by a class of neostriatal local GABAergic interneurons, which, to some extent, are in charge of the feedforward inhibitory circuit. Spiny projection neurons (SPNs) make synapses with each other via their local axon collaterals, shaping the feedback inhibitory circuit. Both inhibitory circuits, feedforward and feedback, are related through...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 36  شماره 

صفحات  -

تاریخ انتشار 2004